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Abstract

An approach for the evaluation of stress tensors in a strained material with a linear row of stress concentrators (i.e.
voids, gas bubbles and secondary phase precipitates in material science) is discussed. The technique can be applied for
materials with concentrators whose form can be conformally mapped onto the unit circle by a rational function and
ranges over all application-important types of applied loadings within the approximation of plane strain. The approach
is applied to the computation of stress tensors in material subjected to uniaxial loading, uniform stress and simple shear.
The effect that a row of voids has on local stress field redistribution in a loaded material is investigated. © 2000

Elsevier Science B.V. All rights reserved.

PACS: 62.20.—x; 81.40.Np; 81.40.Cd; 46.30.—1

1. Introduction

Voids, gas bubbles, secondary phase precipitates etc.
are common feature of the microstructure of modern
structural reactor materials. These inhomogenities are
regarded as stress concentrators in fracture theory.

Stress concentrators can noticeably modify physical-
mechanical properties of structural materials. It is
known that these changes can be both positive and
negative. Moreover, the influence can be varied from a
positive to a negative one with an external stress field
alteration. An example of a positive effect of stress
concentrators is strengthening of structural material
subjected to thermal treatment (heat ageing) in order to
form fine-dispersed secondary phase precipitates. A
negative example is helium bubbles and void formation
in materials under irradiation, namely high temperature
embrittlement of structural reactor materials.

A number of relevant analytical approaches deal with
an analysis of stress field around stress concentrators
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[1-6] and their arrays [7-11]. Investigations [1-6] were
carried out under assumption of negligible influence on
the part of neighbor concentrators. The assumption is
fulfilled provided the distance between stress concen-
trators is at least an order of magnitude larger than the
size of the stress concentrator. Otherwise the effect of the
neighborhood of a stress concentrator should be taken
into account. Quantitative considerations have been
carried out; however, they were either too complicated
for practical application in materials science [7-10] or
submitted several particular cases only [7,11].

In this paper the calculation of stress tensor
o;; = 0;;(r,0) in a strained material with a linear array of
stress concentrators is carried out through the technique
proposed in [11] with some modifications.

2. Problem formulation

In order to calculate the stress tensor, let us consider
an infinite plane with a linear row of uniform stress
concentrators (see Fig. 1). Centers of the stress concen-
trators lie on the Ox axis of the Cartesian coordinate
system. The plane is loaded with an external stress
tensor ¢. The distance between centers of neighbor
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Fig. 1. Geometry of the problem.

concentrators in the row is /. Internal surfaces of the
concentrators are subjected to normal traction P. Pos-
sible plasticity effects in the vicinity of the stress con-
centrators are neglected in the framework of current
consideration. The center, O, of the coordinate system is
chosen in the center of a concentrator in the row. Its
shape is denoted as C,. The shapes of other concentra-
tors are marked as Cy, k = £1,4+2,...,+00 (see Fig. 1).
We consider the case of plane strain.

3. Governing equations

The problem is treated in terms of the complex po-
tential approach [9], where the plane (x,y) is described
through the complex quantity z = x + iy.

According to [9-11] the complex potentials ¢ and
for the elastic problem under consideration can be
written as

P(2) = AG) + 00(2), m
we) =B — =2 o) @

where A4(z) and B(z) are the functions holomorphic
outside the region bounded by C;, k =0+ 1,42,..., 00,
¢y(z) and ,(z) are the complex potentials describing
the strain of the plane without stress concentrators. Due
to the geometry of the problem both 4(z) and B(z) are
functions periodic on x with a period /. According to
the general approaches of complex analysis [11] and
the mathematical theory of elasticity [9,12], in the re-
gion |£ —z| <1 A(z) and B(z) can be obtained in the
form

40 =K@ -2 > 22 [ k-2t 0
Be -10- %> 22 [ Hoe-"e @

where K(z) and L(z) are the functions holomorphic
everywhere outside Cp, and

21
“k:Z;J~ (5)

Applying the complex potentials ¢ and  (Eqgs. (1)
and (2)), taking account of Egs. (3) and (4) to the
boundary conditions of the first problem of the theory of
elasticity [9] yields

A0 +in0 = k0 + B0 (5 4 1)
1 O toegn 2h+1
PO CIEUEEE
+l zoo: 2k+2 / L(&)(& - t)ZkHdé
TEi = 12k+2 I S
(t—1) o~ 22 —%
— g 2 i Gk D) [ K@E -0 e+ (o)
k=0 0
+ 19 (1) + o (1) (6)

Here K (1), L(t), 7, ¢)(¢) and ,(¢) denote the complex
conjugate values of K(¢), L(t), t, ¢y(t) and y,(z), re-
spectively; ¢ is the complex value on the contour Cy and
the sum fi(¢) +if>(¢) is calculated from the following
relation:

t
[ +ifH(0) = i/ (px +1ip,)ds, on the contour Cy,
e
(7)

where p, = 04j|Cy - cos(i, €;), (j,k =x,y), is the resul-
tant force acting at the contour Cy,7 is a unit vector of
the outward normal to the contour Cy, ¢; (j =x,y) are
the unit basis vectors, . is the arbitrarily fixed point on
the contour Cy. The path-tracing is designated positive
provided the plane leaves in the left.

Now let us expand functions K(z) and L(z) into a
series over 1//?



R.E. Voskoboinikov | Journal of Nuclear Materials 280 (2000) 169-185 171

KE) = > 1K) (s)
L(z) = i %Lzm(z). )

Substitution of expansions (8) and (9) into the boundary
condition (6) and separation of terms with equal orders
of 1//% results in the following equation set:

dK, o — —
£o(0) = F00 (00 L L0 — ale) — 10500 — a0
+ﬁ + if27
k=200 B0+ 2 [ ko - nae
0% — T 3% O(z(t — Z) —
o COLO(C)(f—I)df'f‘T COKO(f)df
Kon(t) = K iy T
m=1
_%k:() “2k+2'LOKZm—Zk—Z(é)(é_I)2k+1dcj
m=1
—%k:() szk+2/COLzm72k72(é)(f—I)Zkﬂdf
(t—7) & PRV
+— ook +2(2k+1) [ Koy (E)(E—1)"dE.
T c

(10)

So, we obtain the equation set where the successive
equation (i.e., the successive term in expansions (8) and
(9)) is defined in terms of the previous ones.

Because the discussed approach is aimed at obtaining
particular expressions for the evaluation of stress tensor
components, we do not discuss the problem of conver-
gence of (8) and (9). But we can state that the coefficients
(10) of the expansions (8) and (9) can be obtained and
these expansions converge as well for the concentrators
whose shape conformally mapped onto the unit circle by
a rational function. Detailed consideration can be found
in [9].

The solution of the first boundary problem of the
elasticity theory for a material with a linear row of stress
concentrators is given by

QD(Z) :KO(Z)+ZIZ7KZW 75 Z
m=1

k=0 m

02k+2
J2le2m+2

N

Il
o

< /C Kon(2)(E — 2/ dE + gy (2), (11)

k=0 m=l

d 1 02k42 K
% a lzk+2m+2 (2

2k+]>dé

(12)

provided the equation set (10) can be solved.

Let us consider the first equation in set (10). It can be
solved in the conventional way (see e.g., [9,11,13]).
However, very often a simpler approach can be applied.
Let us evaluate lim;_, ¢(z) and lim,_, ¥(z). According
to Egs. (11) and (12)

lim ¢(2) = 0..(2) = Ko(2) + 00(2), (13)
and
i Y (2) = @ = Lo() ~ 2 ) (1

The condition / — oo reduces the problem to the
limiting case of the isolated stress concentrator in the
strained plane. A lot of these problems either have been
solved (see e.g. [1,2,6,9]) or the solution can be easily
found through well developed techniques [9,13]. So, the
problem under consideration can be solved based on the
following algorithm:

1. Evaluation of the complex potentials ¢ (z) and
V.. (2) for the isolated stress concentrator with the
shape equivalent to that of the concentrators in the
row in the material loaded with the same stress ten-
sor, and determination of complex potentials ¢,(z)
and ,(z) describing the strain of the plane without
stress concentrators.

2. Calculation of the zeroth order terms Ky (z) and Ly(z)
of expansions (8) and (9) according to Egs. (13) and
(14).

3. Computation of the first and the following order
terms Ky, (z) and L,,(z) of expansions (8) and (9)
by equation set (10) to an order sufficient to achieve
the desired accuracy.

4. Determination of approximate expressions of the
complex potentials ¢(z) and y(z) via Eqs. (11) and
(12).

5. Evaluation of the stress tensor through the Kolosov—
Muskhelishvili equations [9,13]

G+ Gog :2(¢'(z)+m), (15)

oo — O + 2y = 2<Z(p”(z) + 1//'(2)). (16)
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4. Stress tensor

Let us carry out evaluation of the stress tensor in a
strained plane with a linear row of circular stress con-
centrators. The centers of the concentrators with radius
R are arranged on the Ox axis of the Cartesian coordi-
nate system. The distance between the centers of
neighbor concentrators is /,2R < [ < 0.

In order to build stress tensors for a number of ap-
plications, relevant to cases of external and internal
loadings, the problem is divided into two parts:
(i) evaluation of the stress tensor of the plane without
external loading with a linear row of stress concen-
trators with edges subjected to normal traction P (a
row of dilatation centers) and (ii) calculation of stress
tensor of a strained plain with a linear row of circular
holes [7]. The plane is loaded uniaxially with a con-
stant stress p which makes an angle w with the Ox
axis.

4.1. Stress tensor of a plane without external loading with
a linear row of dilatation centers

An infinite plane contains an infinite row of circular
stress concentrators with radius R. The distance between
the neighbor concentrators is /. The internal surface of
the stress concentrators is loaded with normal traction P.

In order to calculate the components of the stress
tensor of a plane with the row of stress concentrators let
us carry out calculations according to the algorithm
proposed in Section 3.

1. The complex potentials ¢ (z) and ¥ (z) for the iso-

lated stress concentrator are given by [9]

PR?

z

?(2) =0, Y (2) =

It is clear that both the complex potentials ¢,(z) and
W (z) describing the strain of the externally unloaded
plane without stress concentrators are equal to zero.

2. The zeroth order terms Ky (z) and Ly(z) of expansions
(8) and (9) are

(17)

Ko@) =0, Lo(z) = ——. (18)

3. The first order terms of expansions (8) and (9) can be
written as

2PR*x,
Kale) ===
PRy, [ R (19)
Lz(Z) = 2 1-— 2—3 .

4. Approximate expressions for the complex potentials
¢(z) and y(z) are as follows:

0(z) = ¢ (2) + 0" (2) (R/1)")

20
¥(z) =~y (@) + Y )(R/1), 20

where
0¥ (z) =0,
PR?
(0) -
W) = -,
20, PR? (21)
1) _ okt
@ (z2) i

5. The approximate expression for the stress tensor

a;(r,0), (i,j = r,0) is given by

2
o;(r,0) = O'g)) (r,0) + ‘71(1;‘”(”» 0) (5;) , (22)
where the zeroth order approximation
PR?

O-f‘?)(n 6) = _77

PR? 23
o000 =% -
O-(V((;) (}"7 6) = 01

corresponds to a dilatation center [9,13]. The first
order term in expansion (22) is given by

R? R*
O'S,KV, 9) = —ZazP(l — 4’”*2 + 3?) COS29,
4
by (r, 0) = ZmZP(l + 3%) c0s 20, (24)

2 4
oty (r,0) = 21213(1 + ZVL; - 3%) sin 20,

where o, = n?/6 according to (5).

4.2. Stress tensor of loaded plane with a linear row of
circular holes

An infinite plane contains an infinite row of circular
holes with radius R. The distance between the neigh-
boring holes is /. The internal surfaces of all holes in the
row are free of loading. The plane is loaded with a
uniaxial stress p which makes angle @ with the Ox axis.

In order to obtain the stress tensor in the strained
plane containing a linear row of holes, let us carry out
the calculations according to the algorithm proposed in
Section 3:

1. The complex potentials ¢ (z) and ¥ (z) for the iso-
lated hole in the material subjected to external load-
ing with the constant stress p along the line making
an angle » with the Ox axis of the Cartesian coordi-
nate system are given by [9]

pz R2 2iw
0. (2) = T (1 +Z—22€ ),

_ 7’2 —2iw iz _ &4 2iw
hole) = =5 (e B D),

z
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The complex potentials ¢, (z) and y,(z) describing the
strain of the plane without holes are equal to

=5

7)) =

Py 4 )

Uo() = = e

. The zeroth order terms Ky (z) and Ly(z) of expressions
(8) and (9) can be written as follows:

Lo() = _PZL: (1 N (1 —f—;)eﬂw). (27)

. The first order terms of expansions (8) and (9) can be
written as

(26)

R .
Ko(z) = — _"‘ﬂz’ (14 2e72w),
R4 . . . R2
Ly(z) = “2% (1 3e7 M e — (14 2e7) Z—z) :

(28)

. Approximate expressions for the complex potentials
¢(z) and y(z) are as follows:

o)~ 96 + 0" (1)

Y(2) =) + 9 (z) <172 ) (29)
where
o6 - 2 (1420
VO = - lg (e’zjw +R72 _ R;j‘eziw)7

l/l(l)(z) — OCszl:l =+ 2621w 4 (e—le + ele)Z_z

. R4
_ —2iw
(14 2e )24}.

5. The approximate expression for the stress tensor

a;(r,0), (i,j = r,0) is given by

2
o,(r,0) = ag-)) (r,0) + o-,(:]!>(r, 0) <§> , (31)

where the zeroth order approximation

R? 4R> 3R*
059)(r,9)=§<1*72+ (1*7+7>Cosz(w*9))’
R? R
aé%)(r,()) :%) (1 +r—2— (1 +37) cos2(w—0)),
2R 3R
B0 =5(1+75 5 20, o

coincides with that obtained by [9,13] for an isolated
circular hole in the strained plane. The first order
term in expansion (31) is given by

RZ
al(r,0) = — oczp(2cos2w(1 7?)

4R*> 3R*
+ (1 —r—2+7)(20052(w+0)+c0520)>,

R2
ol (r,0) = a2p< - 2c052w<1 +r_2>

3R*
+ 1+r—4 (2cos2(w + 0) + cos 20) |,

2R*> 3R*
0’511})(7'7 0) = o‘2]7(1 +7*7)

x (2sin2(w 4+ 0) + sin 26). (33)

5. Applications

The approximate expression of the actual stress ten-

sor is written down as

R\2
o;(r,0) = O'S)) (r,0) + (75/.1)(r7 0) <7> , (34)

Fig. 2. Uniaxial loading of the plain with a constant stress p constituting angle o with Ox axis of the Cartesian coordinate system.
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where the factors ag{) (r,0) are evaluated for particular

internal and external loadings.

The actual stress tensor can be obtained through the
superposition of the external and internal loadings act-
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ing on the material. Let us apply the results obtained in
the previous section for construction of stress tensors for
particular stress concentrator configurations and exter-
nal loadings.
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Fig. 3. Dependences of 6% (x,) (a), ¥ (x,¥) (c) and o) (x,y)(R/{)’ (e) and respective cross-sections (b), (d), (f) for different meanings
of angle 0 (shown in the figure) in the case of uniaxial loading of material with a row of circular voids.
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The zeroth order terms of expansion (34) in the case

of uniaxial tension (see Fig. 2) of a material with a row
of stress concentrators according to Egs. (32) and (23)

5.1. Uniaxial loading of the material with a row of circular
are given by

stress concentrators
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Fig. 4. Dependences of JE,:O) (x,) (a), af,(;,) (x,») (c) and o-(%) (x,»)(R/ l)2 (e) and respective cross-sections (b), (d), (f) for different meanings

of angle 0 (shown in the figure) in the case of uniaxial loading of material with a row of circular voids.
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o (r,0) = %’(1 + (1 +2;) .
- (1 +37]?4)cos2(w—9)), (35)

2R* 3R\ .
g(l +r—2—7> sm2(w— 6)7

and the first order terms a (r,0) according to Egs. (33)
and (24) are equal to

R? 4R> 3R
1
al(r,0) :—O(zp(2C05260(1 _ﬁ> + (1 _r_2+7)

X (2cos2(a}+0) + (1 +%) COSZO))7

2 4
0'00 (r 0) = azp(—200s2w(1 +liz) + (1 +3%)
,

X (20052(w+9) + (1 +2—P) 00526))7
p

2R 3R*
oty (r,0) = otzp(l T ,,—4)

X (2sin2(w+9) + (1 +2?P> sin20).

Dependences of o %(r,0), <1)(r, 0)(R/1)* and agf) (r,0)

(0 (r,0) + a (r 0)(R/1)* for the case of uniaxial
loadmg of a matenal with a linear row of circular voids
(P = 0) are shown in Fig. 3 (for g,.(r, 0)), and Fig. 4 (for
age(r, 0)) and Fig. 5 (for g,9(r, 0)). The distance / between
centers of the voids is equal to 4R. The material is loaded
with constant stress p along the line perpendicular to the
line of centers of voids in the row (@ = n/2).

o) (r,0) =

(36)

5.2. Uniform loading of the material with a row of circular
stress concentrators

The zeroth order terms of expansions (34) in the case
of uniform loading (see Fig. 6) are obtained by means of
(32) and (23) in the following form:

2
o7, 0) :p(l - (1 +§)f—2)
P\ R
ag?(r,e):p(u (1+;)r—2), (37)

oty (r,0) =0,

whereas the first order terms a (r 0) according to (33)
and (24) are given by

4R 3R*
al(r,0) = —2a2(1 - 3 )(p+P ) cos 20,
r

4

oty (r,0) = 2az<1 +3§) (p+ P) cos 20, (38)

2R?

" 3R .
G, (r,0) =20 1 tr T4 (p+ P)sin20.

Dependences of a<0) (ry 0) 1)(r 0)(R/1)* and ol(»,-s) (r,0) =

al¥ ; (r,0)+ o 1)(r 0)(R/l) for the case of uniform load-
1ng of a material with linear row of circular voids (P = 0)
are shown in Fig. 7 (for a,.(r,0)), Fig. 8 (for ag(r,0))
and Fig. 9 (for a,9(r,0)). The distance / between centers
of the voids is equal to 4R.

5.3. Simple shear of the material with a row of circular
stress concentrators

The zeroth order terms of expansions (34) in the case
of simple shear of the material with row of circular stress
concentrators (see Fig. 10) are obtained in the form

4R* 3R* PR?
o) (r,0) :P(l —r—2+7) cos2(w — 0) -

2

3R* PR
ag%)(r, 0) :p(l + 7) cos2(w—0)+ gt (39)

2R* 3R\ .
oy (r,0) :P(l +r—2—37) sin 2(o - 0),

and the first order terms a D(r,0) are equal to

Fig. 6. Uniform loading of the plain with a row of circular stress concentrators.
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of angle 0 (shown in the figure) in the case of uniform loading of material with a row of circular voids.
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r ol (r,0) = 0} (r,0) + 0\ (r,0)(R/I)* for the case

% <sin2(w +0)+ (1 + 5 ) sin 29>. (40) of simple shear of a material yvith_linear row of circu-
2p lar voids (P =0) are shown in Fig. 11 (for a,.(r,0)),
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Fig. 12 (for age(r,0)) and Fig. 13 (for a,(r,0)). 6. Effect of a row of stress concentrators on the local stress
The distance / between centers of voids in the row field redistribution of a loaded material

is equal to 4R. The simple shear is applied along the

line of centers of voids in the row (w=m/4, see The influence of a row of stress concentrators on the

Fig. 10). stress tensor in a material subjected to external loading
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Fig. 10. Simple shear of the plain with a row of circular stress concentrators.

is investigated for the case of the material with a linear
row of circular voids.

6.1. Uniaxial loading of a material with a row of circular
voids

The particular case of uniaxial loading of the ma-
terial with constant stress p along the line perpendic-
ular to the line of centers of voids in the row
(w=m/2) is interesting for practical application,
namely investigation of high temperature radiation
embrittlement.

Dependences of the zero order term ofj(.))(r, 0;, the
first order term 0’5})(}", 0)(R/1)* and their sum al(f (r,0)
for the case of uniaxial loading of a material with a
row of circular voids are shown in Fig. 3 (for
a,-(r,0)), Fig. 4 (for agp(r,0)) and Fig. 5 (for a,9(r,0)).
The distance / between centers of the voids is equal to
4R.

The contribution of the row to ¢ (r,0) is of the
order of the applied external stress provided / ~ R (see
Fig. 3). For small distances R < r < 1.75R from the void
center the contribution increases with increase of 6 from
0 to m/2. For distances 1.75R < r < 2R the reverse de-
pendence occurs. The presence of neighbor stress con-
centrators does not affect the general tendencies of
a,-(r,0), except for a small region near the void surface,
where the small compressive stress reduces to a near zero
value.

The maximum tensile stress o'y (r,0)],, =
o\ (r,0)|,..c = 3p is independent of the presence/absence
of the row of voids (see Fig. 4) and occurs on the void
surface at 0 = 0.

The contribution of the row increases as the angle 0
increases from 0 to m/2. The near surface region with
compressive stress reduces significantly due to the pres-
ence of the row (see Fig. 4).

The tangential stress o' (r,0), either reduces (in
comparison with the isolated void) or becomes invariant
(for 6 = 1t/4, where 6 (r,0) = %) (r,0) = 0) due to the
presence of the row of voids (see Fig. 5).

6.2. Uniform loading of a material with a row of circular
voids

In the case of uniform loading, the presence of the
row of voids results in anisotropy of the components o,
and oy of the stress tensor. These components are in-
dependent of the angle 6 in the zeroth order approxi-
mation. However, taking into consideration the first
order terms leads to the appearance of angular depen-
dence of the components g, and gy of the stress tensor.
The contribution of the row to the ¢¥(r, 0) is absent for
0 = /4, negative for n/4 < 6 < n/2 and positive for
0 < 0 < /4 provided the distance from the void center
falls into the region R < r < 1.75R. Otherwise, the an-
gular dependence of the contribution changes its sign
(see Fig. 7). A similar general angular dependence of the
contribution of the row to ¢%) (, 0) occurs, but its sign is
invariant (see Fig. 8). The maximum tensile stress
ag,f,) (r, 0) increases from 2p (for the isolated void) up to
2(1 + 2r%/3)p (for the case I — 2R) due to the presence
of the row of voids.

The tangential stress o' (r,0) either reduces (in
comparison with the isolated void) or becomes invariant
(for 6 =0,7m/2) due to the presence of the row of the
voids (see Fig. 9).

6.3. Simple shear of a material with a row of circular voids

The material is subjected to simple shear along the
line of the centers of voids in the row.

The presence of a row of circular voids leads to a
shift of both the local minimum and maximum of
0,.(r,0) and increases their values. For the zeroth order
approximation the maximum tensile/compressive stress
a0 (r,0) = £p/3 is achieved at 0 = Fr/4. However due
to the row of voids the local extremums of ¢'¥)(r, 0) shift
counterclockwise (see Fig. 11). The shift increases with
decrease of the distance / between the centers of the
neighboring voids.

The same angular shift of both maximum and mini-
mum stress of agy(r,0) on the surface of a void in the
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Fig. 11. Dependences of ¢t (x, y) (a), 9 (x, ) (c) and 6 (x, y)(R/1)” (e) and respective cross-sections (b), (d), () for different meanings
of angle 0 (shown in the figure) in the case of simple shear of material with a row of circular voids along the line of the void centers.

row occurs. However, in contrast to r;,,(r7 0) the pres-
ence of the row of voids results in reduction of actual
stress a((;z) (r,0) (see Fig. 12).

Due to the presence of the row of voids the ab-
solute value of tangential stress o-S?(r, 0) is reduced.

Both maximum and minimum of (;S)(r, 0) shift
counterclockwise in comparison with those of 05?,)
(r,0) (see Fig. 13). The shift increases with decrease of
the distance / between the centers of the neighbor

voids.
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centers.

7. Conclusions

The algorithm for the evaluation of the stress tensor of
a loaded material with a row of stress concentrators is
discussed. Stress tensors can be obtained for the rows of

secondary phase precipitates, gas bubbles and voids
whose shapes conformally are mapped to the unit circle by
a rational function. The approach was applied to the
calculation of zeroth and first order terms of the expan-
sion of the stress tensor of a strained material with a row of
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) (x,») (c) and aﬁ},) (x,»)(R/1 )2 (e) and respective cross-sections (b), (d), (f) for different meanings

of angle 0 (shown in the figure) in the case of simple shear of material with a row of circular voids along the line of the void centers.

circular stress concentrators over the R/ series. Stress

tensor for the following loading modes were calculated:

1. Uniaxial loading of a material with a circular row of
stress concentrators.

2. Uniform loading of a material with a circular row of
stress concentrators.

3. Simple shear of a material with a circular row of

stress concentrators.

The results obtained and their linear combinations
can be applied for evaluation of stress tensors of a
number of practical applications relevant to internal and

external loading within plane strain.
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The effect that a row of circular voids has on the
stress field redistribution was investigated. It is found
that the influence is strongly dependent on the particular
type of applied stress.

Obtained results will be used for evaluation of frac-
ture toughness of a strained material with linear row of
stress concentrators (in a separate paper).
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