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Abstract

An approach for the evaluation of stress tensors in a strained material with a linear row of stress concentrators (i.e.

voids, gas bubbles and secondary phase precipitates in material science) is discussed. The technique can be applied for

materials with concentrators whose form can be conformally mapped onto the unit circle by a rational function and

ranges over all application-important types of applied loadings within the approximation of plane strain. The approach

is applied to the computation of stress tensors in material subjected to uniaxial loading, uniform stress and simple shear.

The e�ect that a row of voids has on local stress ®eld redistribution in a loaded material is investigated. Ó 2000

Elsevier Science B.V. All rights reserved.

PACS: 62.20.)x; 81.40.Np; 81.40.Cd; 46.30.)i

1. Introduction

Voids, gas bubbles, secondary phase precipitates etc.

are common feature of the microstructure of modern

structural reactor materials. These inhomogenities are

regarded as stress concentrators in fracture theory.

Stress concentrators can noticeably modify physical±

mechanical properties of structural materials. It is

known that these changes can be both positive and

negative. Moreover, the in¯uence can be varied from a

positive to a negative one with an external stress ®eld

alteration. An example of a positive e�ect of stress

concentrators is strengthening of structural material

subjected to thermal treatment (heat ageing) in order to

form ®ne-dispersed secondary phase precipitates. A

negative example is helium bubbles and void formation

in materials under irradiation, namely high temperature

embrittlement of structural reactor materials.

A number of relevant analytical approaches deal with

an analysis of stress ®eld around stress concentrators

[1±6] and their arrays [7±11]. Investigations [1±6] were

carried out under assumption of negligible in¯uence on

the part of neighbor concentrators. The assumption is

ful®lled provided the distance between stress concen-

trators is at least an order of magnitude larger than the

size of the stress concentrator. Otherwise the e�ect of the

neighborhood of a stress concentrator should be taken

into account. Quantitative considerations have been

carried out; however, they were either too complicated

for practical application in materials science [7±10] or

submitted several particular cases only [7,11].

In this paper the calculation of stress tensor

rij � rij�r; h� in a strained material with a linear array of

stress concentrators is carried out through the technique

proposed in [11] with some modi®cations.

2. Problem formulation

In order to calculate the stress tensor, let us consider

an in®nite plane with a linear row of uniform stress

concentrators (see Fig. 1). Centers of the stress concen-

trators lie on the Ox axis of the Cartesian coordinate

system. The plane is loaded with an external stress

tensor r. The distance between centers of neighbor
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concentrators in the row is l. Internal surfaces of the

concentrators are subjected to normal traction P. Pos-

sible plasticity e�ects in the vicinity of the stress con-

centrators are neglected in the framework of current

consideration. The center, O, of the coordinate system is

chosen in the center of a concentrator in the row. Its

shape is denoted as C0. The shapes of other concentra-

tors are marked as Ck , k � �1;�2; . . . ;�1 (see Fig. 1).

We consider the case of plane strain.

3. Governing equations

The problem is treated in terms of the complex po-

tential approach [9], where the plane �x; y� is described

through the complex quantity z � x� iy.

According to [9±11] the complex potentials u and w
for the elastic problem under consideration can be

written as

u�z� � A�z� � u0�z�; �1�

w�z� � B�z� ÿ z
dA�z�

dz
� w0�z�; �2�

where A�z� and B�z� are the functions holomorphic

outside the region bounded by Ck , k � 0� 1;�2; . . . ;1,

u0�z� and w0�z� are the complex potentials describing

the strain of the plane without stress concentrators. Due

to the geometry of the problem both A�z� and B�z� are

functions periodic on x with a period l. According to

the general approaches of complex analysis [11] and

the mathematical theory of elasticity [9,12], in the re-

gion jnÿ zj < l A�z� and B�z� can be obtained in the

form

A�z� � K�z� ÿ 1

pi

X1
k�0

a2k�2

l2k�2

Z
C0

K�n��nÿ z�2k�1
dn; �3�

B�z� � L�z� ÿ 1

pi

X1
k�0

a2k�2

l2k�2

Z
C0

L�n��nÿ z�2k�1
dn; �4�

where K�z� and L�z� are the functions holomorphic

everywhere outside C0, and

ak �
X1
n�1

1

nk
: �5�

Applying the complex potentials u and w (Eqs. (1)

and (2)), taking account of Eqs. (3) and (4) to the

boundary conditions of the ®rst problem of the theory of

elasticity [9] yields

f1�t� � if2�t� � K�t� � dK�t�
dt
�t ÿ t� � L�t�

ÿ 1

pi

X1
k�0

a2k�2

l2k�2

Z
C0

K�n��nÿ t�2k�1
dn

� 1

pi

X1
k�0

a2k�2

l2k�2

Z
C0

L�n��nÿ t�2k�1
dn

ÿ �t ÿ t�
pi

X1
k�0

a2k�2

l2k�2
�2k � 1�

Z
C0

K�n��nÿ t�2k
dn� u0�t�

� tu00�t� � w0�t�: �6�

Here K�t�; L�t�; �t; u00�t� and w0�t� denote the complex

conjugate values of K�t�; L�t�; t; u00�t� and w0�z�, re-

spectively; t is the complex value on the contour C0 and

the sum f1�t� � if2�t� is calculated from the following

relation:

f1�t� � if2�t� � i

Z t

tc

�px � ipy�ds; on the contour C0;

�7�

where pk � rkjjC0 � cos�~n; ej
!�; �j; k � x; y�, is the resul-

tant force acting at the contour C0;~n is a unit vector of

the outward normal to the contour C0, ej
! �j � x; y� are

the unit basis vectors, tc is the arbitrarily ®xed point on

the contour C0. The path-tracing is designated positive

provided the plane leaves in the left.

Now let us expand functions K�z� and L�z� into a

series over 1=l2

Fig. 1. Geometry of the problem.
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K�z� �
X1
m�0

1

l2m
K2m�z�; �8�

L�z� �
X1
m�0

1

l2m
L2m�z�: �9�

Substitution of expansions (8) and (9) into the boundary

condition (6) and separation of terms with equal orders

of 1=l2 results in the following equation set:

K0�t� � dK0�t�
dt
�t ÿ t� � L0�t� ÿ u0�t� ÿ tu00�t� ÿ w0�t�

� f1 � if2;

K2�t� � dK2�t�
dt
�t ÿ t� � L2�t� � a2

pi

Z
C0

K0�n��nÿ t�dn

ÿ a2

pi

Z
C0

L0�n��nÿ t�dn� a2�t ÿ t�
pi

Z
C0

K0�n�dn

..

.

K2m�t�� dK2m�t�
dt

�tÿt��L2m�t�

ÿ 1

pi

Xm�1

k�0

a2k�2

Z
C0

K2mÿ2kÿ2�n��nÿt�2k�1
dn

ÿ 1

pi

Xm�1

k�0

a2k�2

Z
C0

L2mÿ2kÿ2�n��nÿt�2k�1
dn

��tÿt�
pi

X1
k�0

a2k�2�2k�1�
Z

C0

K2mÿ2k�2�n��nÿt�2k
dn:

�10�

So, we obtain the equation set where the successive

equation (i.e., the successive term in expansions (8) and

(9)) is de®ned in terms of the previous ones.

Because the discussed approach is aimed at obtaining

particular expressions for the evaluation of stress tensor

components, we do not discuss the problem of conver-

gence of (8) and (9). But we can state that the coe�cients

(10) of the expansions (8) and (9) can be obtained and

these expansions converge as well for the concentrators

whose shape conformally mapped onto the unit circle by

a rational function. Detailed consideration can be found

in [9].

The solution of the ®rst boundary problem of the

elasticity theory for a material with a linear row of stress

concentrators is given by

u�z� � K0�z� �
X1
m�1

1

l2m
K2m�z� ÿ 1

pi

X1
k�0

X1
m�0

a2k�2

l2k�2m�2

�
Z

C0

K2m�z��nÿ z�2k�1
dn� u0�z�; �11�

w�z� � L0�z� � w0�z� �
X1
m�1

1

l2m
L2m�z�

ÿ 1

pi

X1
k�0

X1
m�0

a2k�2

l2k�2m�2

Z
C0

L2m�z��nÿ z�2k�1
dn

ÿ z
dK0�z�

dz
ÿ z

z
dz

X1
m�1

1

l2m
K2m�z�

 !

ÿ z
d

dz
1

pi

X1
k�0

X1
m�0

a2k�2

l2k�2m�2

Z
C0

K2m�z��n
 

ÿ z�2k�1

!
dn;

�12�
provided the equation set (10) can be solved.

Let us consider the ®rst equation in set (10). It can be

solved in the conventional way (see e.g., [9,11,13]).

However, very often a simpler approach can be applied.

Let us evaluate liml!1 u�z� and liml!1 w�z�. According

to Eqs. (11) and (12)

lim
l!1

u�z� � u1�z� � K0�z� � u0�z�; �13�

and

lim
l!1

w�z� � w1�z� � L0�z� ÿ z
dK0�z�

dz
� w0�z�: �14�

The condition l!1 reduces the problem to the

limiting case of the isolated stress concentrator in the

strained plane. A lot of these problems either have been

solved (see e.g. [1,2,6,9]) or the solution can be easily

found through well developed techniques [9,13]. So, the

problem under consideration can be solved based on the

following algorithm:

1. Evaluation of the complex potentials u1�z� and

w1�z� for the isolated stress concentrator with the

shape equivalent to that of the concentrators in the

row in the material loaded with the same stress ten-

sor, and determination of complex potentials u0�z�
and w0�z� describing the strain of the plane without

stress concentrators.

2. Calculation of the zeroth order terms K0�z� and L0�z�
of expansions (8) and (9) according to Eqs. (13) and

(14).

3. Computation of the ®rst and the following order

terms K2m�z� and L2m�z� of expansions (8) and (9)

by equation set (10) to an order su�cient to achieve

the desired accuracy.

4. Determination of approximate expressions of the

complex potentials u�z� and w�z� via Eqs. (11) and

(12).

5. Evaluation of the stress tensor through the Kolosov±

Muskhelishvili equations [9,13]

rrr � rhh � 2 u0�z�
�

� u0�z�
�
; �15�

rhh ÿ rrr � 2irrh � 2 zu00�z�
�

� w0�z�
�
: �16�
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4. Stress tensor

Let us carry out evaluation of the stress tensor in a

strained plane with a linear row of circular stress con-

centrators. The centers of the concentrators with radius

R are arranged on the Ox axis of the Cartesian coordi-

nate system. The distance between the centers of

neighbor concentrators is l; 2R < l <1.

In order to build stress tensors for a number of ap-

plications, relevant to cases of external and internal

loadings, the problem is divided into two parts:

(i) evaluation of the stress tensor of the plane without

external loading with a linear row of stress concen-

trators with edges subjected to normal traction P (a

row of dilatation centers) and (ii) calculation of stress

tensor of a strained plain with a linear row of circular

holes [7]. The plane is loaded uniaxially with a con-

stant stress p which makes an angle x with the Ox

axis.

4.1. Stress tensor of a plane without external loading with

a linear row of dilatation centers

An in®nite plane contains an in®nite row of circular

stress concentrators with radius R. The distance between

the neighbor concentrators is l. The internal surface of

the stress concentrators is loaded with normal traction P.

In order to calculate the components of the stress

tensor of a plane with the row of stress concentrators let

us carry out calculations according to the algorithm

proposed in Section 3.

1. The complex potentials u1�z� and w1�z� for the iso-

lated stress concentrator are given by [9]

u1�z� � 0; w1�z� � ÿ
PR2

z
: �17�

It is clear that both the complex potentials u0�z� and

w0�z� describing the strain of the externally unloaded

plane without stress concentrators are equal to zero.

2. The zeroth order terms K0�z� and L0�z� of expansions

(8) and (9) are

K0�z� � 0; L0�z� � ÿ PR2

z
: �18�

3. The ®rst order terms of expansions (8) and (9) can be

written as

K2�z� � ÿ 2PR4a2

z
;

L2�z� � 2PR4a2

z
1

�
ÿ R2

z3

�
:

�19�

4. Approximate expressions for the complex potentials

u�z� and w�z� are as follows:

u�z� � u�0��z� � u�1��z� R=l� �2;
w�z� � w�0��z� � w�1��z� R=l� �2;

�20�

where

u�0��z� � 0;

w�0��z� � ÿ PR2

z
;

u�1��z� � ÿ 2a2PR2

z
;

w�1��z� � 2a2Pz 1

�
ÿ R4

z4

�
:

�21�

5. The approximate expression for the stress tensor

rij�r; h�; �i; j � r; h� is given by

rij�r; h� � r�0�ij �r; h� � r�1�ij �r; h�
R
l

� �2

; �22�

where the zeroth order approximation

r�0�rr �r; h� � ÿ
PR2

r2
;

r�0�hh �r; h� �
PR2

r2
;

r�0�rh �r; h� � 0;

�23�

corresponds to a dilatation center [9,13]. The ®rst

order term in expansion (22) is given by

r�1�rr �r; h� � ÿ2a2P 1

�
ÿ 4

R2

r2
� 3

R4

r4

�
cos 2h;

r�1�hh �r; h� � 2a2P 1

�
� 3R4

r4

�
cos 2h; �24�

r�1�rh �r; h� � 2a2P 1

�
� 2R2

r2
ÿ 3R4

r4

�
sin 2h;

where a2 � p2=6 according to (5).

4.2. Stress tensor of loaded plane with a linear row of

circular holes

An in®nite plane contains an in®nite row of circular

holes with radius R. The distance between the neigh-

boring holes is l. The internal surfaces of all holes in the

row are free of loading. The plane is loaded with a

uniaxial stress p which makes angle x with the Ox axis.

In order to obtain the stress tensor in the strained

plane containing a linear row of holes, let us carry out

the calculations according to the algorithm proposed in

Section 3:

1. The complex potentials u1�z� and w1�z� for the iso-

lated hole in the material subjected to external load-

ing with the constant stress p along the line making

an angle x with the Ox axis of the Cartesian coordi-

nate system are given by [9]

u1�z� �
pz
4

1� R2

z2
2e2iw

� �
;

w1�z� � ÿ
pz
2

eÿ2iw � R2

z
ÿ R4

z4
e2iw

� �
:

�25�
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The complex potentials u0�z� and w0�z� describing the

strain of the plane without holes are equal to

u0�z� �
pz
4
;

w0�z� � ÿ
pz
2

eÿ2iw:
�26�

2. The zeroth order terms K0�z� and L0�z� of expressions

(8) and (9) can be written as follows:

K0�z� � pR2

2z
e2iw;

L0�z� � ÿ pR2

2z
1� 1ÿ R2

z2

� �
e2iw

� �
:

�27�

3. The ®rst order terms of expansions (8) and (9) can be

written as

K2�z� � ÿ a2pR4

z
�1� 2eÿ2iw�;

L2�z� � a2pR4

z
1� 3eÿ2iw � e2iw ÿ 1� 2eÿ2iw

ÿ �R2

z2

� �
:

�28�
4. Approximate expressions for the complex potentials

u�z� and w�z� are as follows:

u�z� � u�0��z� � u�1��z� R
l

� �2

;

w�z� � w�0��z� � w�1��z� R
l

� �2

;

�29�

where

u�0��z� � pz
4

1

�
� 2e2iw R2

z2

�
;

w�0��z� � ÿ pz
2

eÿ2iw

�
� R2

z
ÿ R4

z4
e2iw

�
;

u�1��z� � ÿ a2pz e2iw

�
� R2

z2
�1� 2eÿ2iw�

�
; �30�

w�1��z� � a2pz 1

�
� 2e2iw � �eÿ2iw � e2iw� R

z2

ÿ �1� 2eÿ2iw�R
4

z4

�
:

5. The approximate expression for the stress tensor

rij�r; h�; �i; j � r; h� is given by

rij�r; h� � r�0�ij �r; h� � r�1�ij �r; h�
R
l

� �2

; �31�

where the zeroth order approximation

r�0�rr �r;h��
p
2

1

�
ÿR2

r2
� 1

�
ÿ4R2

r2
�3R4

r4

�
cos2�xÿh�

�
;

r�0�hh �r;h��
p
2

1

�
�R2

r2
ÿ 1

�
�3R4

r4

�
cos2�xÿh�

�
;

r�0�rh �r;h��
p
2

1

�
�2R2

r2
ÿ3R4

r4

�
sin2�xÿh�; �32�

coincides with that obtained by [9,13] for an isolated

circular hole in the strained plane. The ®rst order

term in expansion (31) is given by

r�1�rr �r; h� � ÿ a2p 2 cos 2x 1

��
ÿ R2

r2

�
� 1

�
ÿ 4R2

r2
� 3R4

r4

�
�2 cos 2�x� h� � cos 2h�

�
;

r�1�hh �r; h� � a2p
�
ÿ 2 cos 2x 1

�
� R2

r2

�
� 1

�
� 3R4

r4

�
�2 cos 2�x� h� � cos 2h�

�
;

r�1�rh �r; h� � a2p 1

�
� 2R2

r2
ÿ 3R4

r4

�
� �2 sin 2�x� h� � sin 2h�: �33�

5. Applications

The approximate expression of the actual stress ten-

sor is written down as

rij�r; h� � r�0�ij �r; h� � r�1�ij �r; h�
R
l

� �2

; �34�

Fig. 2. Uniaxial loading of the plain with a constant stress p constituting angle x with Ox axis of the Cartesian coordinate system.
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where the factors r�k�ij �r; h� are evaluated for particular

internal and external loadings.

The actual stress tensor can be obtained through the

superposition of the external and internal loadings act-

ing on the material. Let us apply the results obtained in

the previous section for construction of stress tensors for

particular stress concentrator con®gurations and exter-

nal loadings.

Fig. 3. Dependences of r�s�rr �x; y� (a), r�0�rr �x; y� (c) and r�1�rr �x; y��R=l�2 (e) and respective cross-sections (b), (d), (f) for di�erent meanings

of angle h (shown in the ®gure) in the case of uniaxial loading of material with a row of circular voids.

174 R.E. Voskoboinikov / Journal of Nuclear Materials 280 (2000) 169±185



5.1. Uniaxial loading of the material with a row of circular

stress concentrators

The zeroth order terms of expansion (34) in the case

of uniaxial tension (see Fig. 2) of a material with a row

of stress concentrators according to Eqs. (32) and (23)

are given by

r�0�rr �r; h� �
p
2

1

�
ÿ 1

�
� 2P

p

�
R2

r2

� 1

�
ÿ 4R2

r2
� 3R4

r4

�
cos 2�xÿ h�

�
;

Fig. 4. Dependences of r�s�hh �x; y� (a), r�0�hh �x; y� (c) and r�1�hh �x; y��R=l�2 (e) and respective cross-sections (b), (d), (f) for di�erent meanings

of angle h (shown in the ®gure) in the case of uniaxial loading of material with a row of circular voids.
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Fig. 5. Dependences of r�s�rh �x; y� (a), r�0�rh �x; y� (c) and r�1�rh �x; y��R=l�2 (e) and respective cross-sections (b), (d), (f) for di�erent meanings

of angle h (shown in the ®gure) in the case of uniaxial loading of material with a row of circular voids.
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r�0�hh �r; h� �
p
2

1

�
� 1

�
� 2P

p

�
R2

r2

ÿ 1

�
� 3R4

r4

�
cos 2�xÿ h�

�
; �35�

r�0�rh �r; h� �
p
2

1

�
� 2R2

r2
ÿ 3R4

r4

�
sin 2�xÿ h�;

and the ®rst order terms r�1�ij �r; h� according to Eqs. (33)

and (24) are equal to

r�1�rr �r;h� �ÿ a2p 2 cos 2x 1

��
ÿ R2

r2

�
� 1

�
ÿ 4R2

r2
� 3R4

r4

�
� 2 cos 2�x
�

� h� � 1

�
� 2P

p

�
cos 2h

��
;

r�1�hh �r;h� � a2p
�
ÿ 2 cos 2x 1

�
� R2

r2

�
� 1

�
� 3R4

r4

�
� 2 cos 2�x
�

� h� � 1

�
� 2P

p

�
cos 2h

��
;

r�1�rh �r;h� � a2p 1

�
� 2R2

r2
ÿ 3R4

r4

�
� 2 sin 2�x
�

� h� � 1

�
� 2P

p

�
sin 2h

�
:

�36�

Dependences of r�0�ij �r; h�; r�1�ij �r; h��R=l�2 and r�S�ij �r; h�
� r�0�ij �r; h� � r�1�ij �r; h��R=l�2 for the case of uniaxial

loading of a material with a linear row of circular voids

�P � 0� are shown in Fig. 3 (for rrr�r; h�), and Fig. 4 (for

rhh�r; h�) and Fig. 5 (for rrh�r; h�). The distance l between

centers of the voids is equal to 4R. The material is loaded

with constant stress p along the line perpendicular to the

line of centers of voids in the row �x � p=2�.

5.2. Uniform loading of the material with a row of circular

stress concentrators

The zeroth order terms of expansions (34) in the case

of uniform loading (see Fig. 6) are obtained by means of

(32) and (23) in the following form:

r�0�rr �r; h� � p 1

�
ÿ 1

�
� P

p

�
R2

r2

�
;

r�0�hh �r; h� � p 1

�
� 1

�
� P

p

�
R2

r2

�
; �37�

r�0�rh �r; h� � 0;

whereas the ®rst order terms r�1�ij �r; h� according to (33)

and (24) are given by

r�1�rr �r; h� � ÿ 2a2 1

�
ÿ 4R2

r2
� 3R4

r4

�
�p � P � cos 2h;

r�1�hh �r; h� � 2a2 1

�
� 3R4

r4

�
�p � P� cos 2h; �38�

r�1�rh �r; h� � 2a2 1

�
� 2R2

r2
ÿ 3R4

r4

�
�p � P � sin 2h:

Dependences of r�0�ij �r;h�; r�1�ij �r;h��R=l�2 and r�S�ij �r;h� �
r�0�ij �r;h��r�1�ij �r;h��R=l�2 for the case of uniform load-

ing of a material with linear row of circular voids �P � 0�
are shown in Fig. 7 (for rrr�r;h�), Fig. 8 (for rhh�r;h�)
and Fig. 9 (for rrh�r;h�). The distance l between centers

of the voids is equal to 4R.

5.3. Simple shear of the material with a row of circular

stress concentrators

The zeroth order terms of expansions (34) in the case

of simple shear of the material with row of circular stress

concentrators (see Fig. 10) are obtained in the form

r�0�rr �r; h� � p 1

�
ÿ 4R2

r2
� 3R4

r4

�
cos 2�xÿ h� ÿ PR2

r2
;

r�0�hh �r; h� � p 1

�
� 3R4

r4

�
cos 2�xÿ h� � PR2

r2
; �39�

r�0�rh �r; h� � p 1

�
� 2R2

r2
ÿ 3R4

r4

�
sin 2�xÿ h�;

and the ®rst order terms r�1�ij �r; h� are equal to

Fig. 6. Uniform loading of the plain with a row of circular stress concentrators.
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r�1�rr �r; h� � ÿ 4a2p cos 2x 1

��
ÿ R2

r2

�
� 1

�
ÿ 4R2

r2
� 3R4

r4

�
� cos 2�x
�

:� h� � 1

�
� P

2p

�
cos 2h

��
;

r�1�hh �r; h� � 4a2p
�
ÿ cos 2x 1

�
� R2

r2

�
� 1

�
� 3R4

r4

�
� cos 2�x
�

:� h� � 1

�
� P

2p

�
cos 2h

��
;

Fig. 7. Dependences of r�s�rr �x; y� (a), r�0�rr �x; y� (c) and r�1�rr �x; y��R=l�2 (e) and respective cross-sections (b), (d), (f) for di�erent meanings

of angle h (shown in the ®gure) in the case of uniform loading of material with a row of circular voids.
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r�1�rh �r; h� � 4a2p � 1

�
� 2R2

r2
ÿ 3R4

r4

�
� sin 2�x
�

� h� � 1

�
� P

2p

�
sin 2h

�
: �40�

Dependences of r�0�ij �r; h�; r�1�ij �r; h��R=l�2 and

r�S�ij �r; h� � r�0�ij �r; h� � r�1�ij �r; h��R=l�2 for the case

of simple shear of a material with linear row of circu-

lar voids �P � 0� are shown in Fig. 11 (for rrr�r; h�),

Fig. 8. Dependences of r�s�hh �x; y� (a), r�0�hh �x; y� (c) and r�1�hh �x; y��R=l�2 (e) and respective cross-sections (b), (d), (f) for di�erent meanings

of angle h (shown in the ®gure) in the case of uniaxial loading of material with a row of circular voids.
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Fig. 12 (for rhh�r; h�) and Fig. 13 (for rrh�r; h�).
The distance l between centers of voids in the row

is equal to 4R. The simple shear is applied along the

line of centers of voids in the row �x � p=4, see

Fig. 10).

6. E�ect of a row of stress concentrators on the local stress

®eld redistribution of a loaded material

The in¯uence of a row of stress concentrators on the

stress tensor in a material subjected to external loading

Fig. 9. Dependences of r�s�rh �x; y� (a), r�0�rh �x; y� (c) and r�1�rh �x; y��R=l�2 (e) and respective cross-sections (b), (d), (f) for di�erent meanings

of angle h (shown in the ®gure) in the case of uniaxial loading of material with a row of circular voids.
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is investigated for the case of the material with a linear

row of circular voids.

6.1. Uniaxial loading of a material with a row of circular

voids

The particular case of uniaxial loading of the ma-

terial with constant stress p along the line perpendic-

ular to the line of centers of voids in the row

�x � p=2� is interesting for practical application,

namely investigation of high temperature radiation

embrittlement.

Dependences of the zero order term r�0�ij �r; h�, the

®rst order term r�1�ij �r; h��R=l�2 and their sum r�S�ij �r; h�
for the case of uniaxial loading of a material with a

row of circular voids are shown in Fig. 3 (for

rrr�r; h�), Fig. 4 (for rhh�r; h�) and Fig. 5 (for rrh�r; h�).
The distance l between centers of the voids is equal to

4R.

The contribution of the row to r�S�rr �r; h� is of the

order of the applied external stress provided l � R (see

Fig. 3). For small distances R < r < 1:75R from the void

center the contribution increases with increase of h from

0 to p=2. For distances 1:75R < r < 2R the reverse de-

pendence occurs. The presence of neighbor stress con-

centrators does not a�ect the general tendencies of

rrr�r; h�, except for a small region near the void surface,

where the small compressive stress reduces to a near zero

value.

The maximum tensile stress r�S�hh �r; h�jmax �
r�0�hh �r; h�jmax � 3p is independent of the presence/absence

of the row of voids (see Fig. 4) and occurs on the void

surface at h � 0.

The contribution of the row increases as the angle h
increases from 0 to p=2. The near surface region with

compressive stress reduces signi®cantly due to the pres-

ence of the row (see Fig. 4).

The tangential stress r�S�rh �r; h�, either reduces (in

comparison with the isolated void) or becomes invariant

(for h � p=4, where r�S�rh �r; h� � r�0�rh �r; h� � 0� due to the

presence of the row of voids (see Fig. 5).

6.2. Uniform loading of a material with a row of circular

voids

In the case of uniform loading, the presence of the

row of voids results in anisotropy of the components rrr

and rhh of the stress tensor. These components are in-

dependent of the angle h in the zeroth order approxi-

mation. However, taking into consideration the ®rst

order terms leads to the appearance of angular depen-

dence of the components rrr and rhh of the stress tensor.

The contribution of the row to the r�S�rr �r; h� is absent for

h � p=4; negative for p=4 < h < p=2 and positive for

0 < h < p=4 provided the distance from the void center

falls into the region R < r < 1:75R: Otherwise, the an-

gular dependence of the contribution changes its sign

(see Fig. 7). A similar general angular dependence of the

contribution of the row to r�S�hh �r; h� occurs, but its sign is

invariant (see Fig. 8). The maximum tensile stress

r�S�hh �r; h� increases from 2p (for the isolated void) up to

2�1� 2p2=3�p (for the case l! 2R) due to the presence

of the row of voids.

The tangential stress r�S�rh �r; h� either reduces (in

comparison with the isolated void) or becomes invariant

(for h � 0; p=2) due to the presence of the row of the

voids (see Fig. 9).

6.3. Simple shear of a material with a row of circular voids

The material is subjected to simple shear along the

line of the centers of voids in the row.

The presence of a row of circular voids leads to a

shift of both the local minimum and maximum of

rrr�r; h� and increases their values. For the zeroth order

approximation the maximum tensile/compressive stress

r�0�rr �r; h� � �p=3 is achieved at h � �p=4. However due

to the row of voids the local extremums of r�S�rr �r; h� shift

counterclockwise (see Fig. 11). The shift increases with

decrease of the distance l between the centers of the

neighboring voids.

The same angular shift of both maximum and mini-

mum stress of rhh�r; h� on the surface of a void in the

Fig. 10. Simple shear of the plain with a row of circular stress concentrators.
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row occurs. However, in contrast to rrr�r; h� the pres-

ence of the row of voids results in reduction of actual

stress r�S�hh �r; h� (see Fig. 12).

Due to the presence of the row of voids the ab-

solute value of tangential stress r�S�rh �r; h� is reduced.

Both maximum and minimum of r�S�rh �r; h� shift

counterclockwise in comparison with those of r�0�rh

�r; h� (see Fig. 13). The shift increases with decrease of

the distance l between the centers of the neighbor

voids.

Fig. 11. Dependences of r�s�rr �x; y� (a), r�0�rr �x; y� (c) and r�1�rr �x; y��R=l�2 (e) and respective cross-sections (b), (d), (f) for di�erent meanings

of angle h (shown in the ®gure) in the case of simple shear of material with a row of circular voids along the line of the void centers.
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7. Conclusions

The algorithm for the evaluation of the stress tensor of

a loaded material with a row of stress concentrators is

discussed. Stress tensors can be obtained for the rows of

secondary phase precipitates, gas bubbles and voids

whose shapes conformally are mapped to the unit circle by

a rational function. The approach was applied to the

calculation of zeroth and ®rst order terms of the expan-

sion of the stress tensor of a strained material with a row of

Fig. 12. Dependences of r�s�hh �x; y� (a), r�0��hh��x; y� (c) and r�1�hh �x; y��R=l�2 (e) and respective cross-sections (b), (d), (f) for di�erent

meanings of angle h (shown in the ®gure) in the case of simple shear of material with a row of circular voids along the line of the void

centers.
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circular stress concentrators over the R2=l2 series. Stress

tensor for the following loading modes were calculated:

1. Uniaxial loading of a material with a circular row of

stress concentrators.

2. Uniform loading of a material with a circular row of

stress concentrators.

3. Simple shear of a material with a circular row of

stress concentrators.

The results obtained and their linear combinations

can be applied for evaluation of stress tensors of a

number of practical applications relevant to internal and

external loading within plane strain.

Fig. 13. Dependences of r�s�rh �x; y� (a), r�0�rh �x; y� (c) and r�1�rh �x; y��R=l�2 (e) and respective cross-sections (b), (d), (f) for di�erent meanings

of angle h (shown in the ®gure) in the case of simple shear of material with a row of circular voids along the line of the void centers.
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The e�ect that a row of circular voids has on the

stress ®eld redistribution was investigated. It is found

that the in¯uence is strongly dependent on the particular

type of applied stress.

Obtained results will be used for evaluation of frac-

ture toughness of a strained material with linear row of

stress concentrators (in a separate paper).
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